The First Naturally Occurring Thiepinols and Thienol from an Endolichenic Fungus *Coniochaeta* sp.

Yinchao Wang,^{†,§} Shubin Niu,[†] Shuchun Liu,[†] Liangdong Guo,[†] and Yongsheng Che^{*,†,‡}

Key Laboratory of Systematic Mycology & Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, People's Republic of China, and Graduate School of Chinese Academy of Sciences, Beijing 100039, People's Republic of China

cheys@im.ac.cn

Received September 10, 2010

ORGANIC LETTERS 2010 Vol. 12, No. 21 5081-5083

ABSTRACT

Coniothiepinols A (1) and B (2) and coniothienol A (3), the first naturally occurring thiepinols (1 and 2) and thienol (3), have been isolated from the crude extract of an endolichenic fungus *Coniochaeta* sp. 1 possesses a unique 8-oxa-2-thia-bicyclo[3.2.1]octane skeleton, and its structure was assigned by NMR spectroscopy and X-ray crystallography. 1 showed significant activity against the Gram-positive bacteria, *Enterococcus faecium* and *Enterococcus faecalis*.

Analogous to plant endophytes living in the intercellular spaces of the hosts, endolichenic fungi are microbes that inhabit the thalli of lichens.¹ To date, only a limited number of secondary metabolites have been reported from the endolichenic fungi. Examples include five heptaketides isolated from the *Corynespora* sp.,^{2,3} ambuic acid and torreyanic acid derivatives from the *Pestalotiopsis* sp.,⁴ and allenyl and alkynyl phenyl ethers from *Neurospora terricola*.⁵ Our prior chemical study of the endolichenic fungus *Coniochaeta* sp. also afforded six new xanthone derivatives, such

- [‡] Beijing Institute of Pharmacology & Toxicology.
- [§] Graduate School of Chinese Academy of Sciences.
- (1) Arnold, A. E. Fungal Biol. Rev. 2007, 21, 51-66.
- (2) Paranagama, P. A.; Wijeratne, E. M. K.; Burns, A. M.; Marron, M. T.; Gunatilaka, M. K.; Arnold, A. E.; Gunatilaka, A. A. L. *J. Nat. Prod.* **2007**, *70*, 1700–1705.
- (3) Wijeratne, E. M. K.; Bashyal, B. P.; Gunatilaka, M. K.; Arnold,
- A. E.; Gunatilaka, A. A. L. J. Nat. Prod. 2010, 73, 1156–1159.
 (4) Ding, G.; Li, Y.; Fu, S.; Liu, S.; Wei, J.; Che, Y. J. Nat. Prod. 2009,

as conioxepinol A (4), a cytotoxic oxepinochromenone, and coniofurol A (5), a furochromenone.⁶ The oxepinochromenones and furochromenones (ring-expanded and ring-contracted xanthones, respectively) are relatively rare, with only a few precedents reported prior to our work.^{7–11}

Since the crude extract of *Coniochaeta* sp. also showed antimicrobial activities, and its HPLC chromatogram revealed minor components that could not be identified, the fungus was

(7) Singh, S. B.; Ball, R. G.; Zink, D. L.; Monaghan, R. L.; Polishook, J. D.; Sanchez, M.; Pelaez, F.; Silverman, K. C.; Lingham, R. B. J. Org. Chem. **1997**, 62, 7485–7488.

(8) Bugni, T. S.; Bernan, V. S.; Greenstein, M.; Janso, J. E.; Maiese,

W. M.; Mayne, C. L.; Ireland, C. M. J. Org. Chem. 2003, 68, 2014–2017.
(9) Liermann, J. C.; Kolshorn, H.; Opatz, T.; Thines, E.; Anke, H. J. Nat. Prod. 2009, 72, 1905–1907.

(10) Krohn, K.; Kouam, S. F.; Kuigoua, G. M.; Hussain, H.; Cludius-

Brandt, S.; Flörke, U.; Kurtán, T.; Pescitelli, G.; Di Bari, L.; Draeger, S.; Schulz, B. *Chem.*—*Eur. J.* **2009**, *15*, 12121–12132.

(11) Motai, T.; Kitanaka, S. J. Nat. Prod. 2005, 68, 1732-1735.

10.1021/ol102168z © 2010 American Chemical Society Published on Web 10/04/2010

 $[\]ast$ To whom correspondence should be addressed. Tel/Fax: +86 10 82618785.

[†] Institute of Microbiology.

⁽⁴⁾ Ding, G.; El, T.; Fu, S.; Elu, S.; Wei, J.; Che, T. J. Nat. Prod. 2005 72, 182–186.

⁽⁵⁾ Zhang, F.; Liu, S.; Lu, X.; Guo, L.; Zhang, H.; Che, Y. J. Nat. Prod. 2009, 72, 1782–1785.

⁽⁶⁾ Wang, Y.; Zheng, Z.; Liu, S.; Zhang, H.; Guo, L.; Che, Y. J. Nat. Prod. 2010, 73, 920–924.

refermented on a larger scale on rice in which the oxepinochromenones and furochromenones were initially isolated. Bioassay-guided separation of an EtOAc extract afforded two thiepinols, coniothiepinols A (1) and B (2), and a thienol, coniothienol A (3). Details of their structure assignment and antimicrobial activities are reported herein.

Coniothiepinol A (1) was assigned a molecular formula of $C_{16}H_{14}O_7S$ (10 degrees of unsaturation) by HRESIMS (*m/z* 373.0353 [M + Na]⁺). Its NMR spectra showed resonances for two exchangeable protons, two methyl groups (one methoxy), one methylene, two oxymethines, eight aromatic/olefinic carbons with two protonated, one oxygenated sp³ quaternary carbon, one carboxylic carbon (δ_C 166.2), and one $\alpha_{,\beta}$ -unsaturated ketone carbon (δ_C 177.2). The ¹H and ¹³C NMR data of **1** (Table 1)

position	$\delta_{\mathrm{H}}{}^{a} \left(J \text{ in Hz} \right)$	${\delta_{\mathrm{C}}}^b$	HMBC $(H \rightarrow C#)$
1		161.5	
2	6.61, s	113.0	1, 4, 9a, 11
3		148.1	
4	6.76, s	107.8	2, 4a, 9, 9a, 11
4a		157.4	
5		96.9	
6	5.06, m	84.6	
7a	2.41, dd (8.0, 3.5)	46.3	6, 8, 8a
7b	2.75, dd (13.5, 8.0)		5, 8a
8	5.79, d (8.0)	73.0	5, 6, 8a, 9, 10a
8a		117.1	
9		177.2	
9a		108.6	
10a		165.4	
11	2.38, s	22.1	2, 3, 4
12		166.2	
13	3.88, s	53.4	12
OH-1	12.29, s		1, 2, 3
OH-6	5.42, d (7.0)		
^a Recorde	ed at 500 MHz. ^b Recorde	ed at 100 M	Hz.

revealed the same 5-hydroxy-7-methyl-4*H*-chromen-4-one unit as found in **4** and **5**,⁶ but the remaining portion was significantly different. The ${}^{1}H{-}^{1}H$ COSY NMR data of **1** showed the isolated spin-system of C-6–C-8 (including OH-6). HMBC correlations

from H₂-7 and H-8 to C-8a, and from H-7b to C-5 led to the connections of C-8 to C-8a and C-5 to C-6, respectively. While that from H-8 to C-5 established an ether linkage between C-5 and C-8. Considering the chemical shifts of C-5 ($\delta_{\rm C}$ 96.9) and C-10a ($\delta_{\rm C}$ 165.4), the only sulfur atom in **1** was attached to both carbons to complete a 4,5-dihydro-2*H*-thiepino[2,3-*b*]chromen-6(3*H*)-one skeleton. An HMBC cross peak from H₃-13 to C-12 connected the C-13 *O*-methyl group to C-12, whereas C-12 was attached to C-5 on the basis of unsaturation requirement, permitting assignment of the plannar structure of **1** as shown.

Finally, **1** was further confirmed by single-crystal X-ray diffraction analysis (Figure 1), and the X-ray data allowed

Figure 1. Thermal ellipsoid representation of 1. (Note: The numbering of structure 1 presented here is consistent with the backbone numbering for 1. A different numbering system is used for the structural data deposited with the CCDC.)

determination of its relative configuration. The presence of a sulfur atom in **1** and the value of the Flack parameter $0.01(10)^{12}$ determined by X-ray analysis also permitted assignment of the absolute configurations of all the chiral centers as 5*R*, 6*R*, and 8*S*.

Compound **2** was given a molecular formula of $C_{16}H_{16}O_6S$ by HRESIMS (*m*/*z* 359.0563 [M + Na]⁺). Analysis of its NMR spectroscopic data showed structural similarity to **1**, except that the thiepane ring was different. Specifically, the C-8 oxymethine in **1** (δ_H/δ_C 5.79/73.0) was reduced and connected to the methyl formate unit as evidenced by its NMR shifts (δ_H/δ_C 3.93/44.6) and HMBC cross peaks from H-8 and H₃-13 to C-12. While the C-7 methylene in **1** was replaced by an oxymethine (δ_H/δ_C 4.25/66.9), and the C-5 oxygenated sp³ quaternary carbon was replaced by a methylene (δ_H/δ_C 2.90/26.8), which were supported by relevant ¹H⁻¹H COSY NMR data. Therefore, the gross structure of **2** was determined as depicted.

The relative configuration of **2** was deduced by analogy to **4**.⁶ Considering their biogenetic similarity, the C-7 and C-8 stereogenic centers in both compounds presumably have the same configuration, suggesting a *cis* relationship between OH-7 and the methyl formate group, which was partially supported by a NOESY correlation of OH-7 with H₃-13.

The absolute configuration of the C-7 secondary alcohol in 2 was first assigned via the circular dichroism data of an in situ

⁽¹²⁾ Flack, H. D. Acta Crystallogr., Sect. A 1983, 39, 876-881.

formed [Rh₂(OCOCF₃)₄] complex,¹³ with the inherent contribution subtracted. Upon addition of [Rh₂(OCOCF₃)₄] to a solution of **2** in CH₂Cl₂, a metal complex with [Rh₂(OCOCF₃)₄] was generated as an auxiliary chromophore. It has been demonstrated that the sign of the E band at ca. 350 nm can be used to correlate the absolute configuration of a secondary alcohol by applying the bulkiness rule.^{13,14} In this case, the Rh-complex of **2** showed a positive E band (Figure 2), correlating to the 7*S* absolute

Figure 2. CD spectra of Rh-complex of 2 with the inherent CD spectrum subtracted.

configuration. Considering the possible interference of the carbonyl functionality, the modified Mosher method was also applied.^{15,16} Treatment of **2** with (*S*)- and (*R*)-MTPA Cl afforded *R*-(**2a**) and *S*-MTPA (**2b**) monoesters, respectively. The difference in chemical shift values ($\Delta \delta = \delta_S - \delta_R$) for **2b** and **2a** was calculated to assign the 7*S* configuration (Figure 3). Therefore, the 7*S* and 8*R* absolute configuration

Figure 3. $\Delta \sigma$ values (in ppm) = $\sigma_s - \sigma_R$ obtained for (*R*)- and (*S*)-MPTA esters 2a and 2b, respectively.

was finally assigned for 2 based on the $\Delta\delta$ results summarized in Figure 3.

Compound **3** gave a pseudomolecular ion $[M + Na]^+$ peak at m/z 375.0512 by HRESIMS, consistent with the molecular formula $C_{16}H_{16}O_7S$ (nine degrees of C=C unsaturation). Analysis of its NMR spectroscopic data revealed nearly identical structural features to those of **5**, except that the chemical shifts of the C-7 oxymethine in **5** (δ_H/δ_C 5.33/91.6) were different from those of its counterpart in **3** (δ_H/δ_C 4.59/56.7). In addition, the chemical shift of the C-10a

sp² quaternary carbon in **3** ($\delta_{\rm C}$ 176.2) is also different from that of **5** ($\delta_{\rm C}$ 171.0). Collectively, C-7 and C-10a were both attached to the sulfur atom to establish a 2*H*-thieno[2,3-*b*]chromen-4(3*H*)-one frame, completing the gross structure of **3**.

The relative configuration of **3** was determined on the basis of NOE data. Upon irradiation of H-7 in the NOE experiment, enhancement was observed for H₃-13, suggesting their *cis* relationship, which is consistent with that of **5**. The absolute configuration of the C-8 tertiary alcohol was also first deduced via the CD data of the [Rh₂(OCOCF₃)₄] complex as described for **2** and **5**.⁶ The Rh-complex of **3** showed a positive E band near 350 nm (Figure S9, Supporting Information), revealing the 8*S* absolute configuration. Although this assignment could not be verified, the 7*R* and 8*S* absolute configuration was deduced for **3** considering its biogenetic similarity to **5**.

Compounds 1–3 were tested for activity against the Grampositive bacteria, *Enterococcus faecium* (CGMCC 1.2025) and *Enterococcus faecalis* (CGMCC 1.2535), and the plant pathogenic fungus *Fusarium oxysporum* (CGMCC 3.2830) (Table 2). Com-

Table 2. Antimicrobial Activities of Compounds 1–3					
	IC ₅₀ (µg/mL)				
compd	E. faecium	E. faecalis	F. oxysporum		
1 2 3 ampicillin	$\begin{array}{c} 3.93 \pm 0.18 \\ > 20 \\ 2.00 \pm 0.06 \\ 0.51 \pm 0.014 \end{array}$	11.51 ± 0.45 >20 4.89 ± 0.19 2.61 ± 0.23	13.12 ± 0.46 >20 >20		
carbendazim		0.1_0	0.44 ± 0.008		

pound **3** showed significant activity against *E. faecium* and *E. faecalis*, with IC₅₀ values of 2.00 and 4.89 μ g/mL, repectively, while the positive control ampicillin showed IC₅₀ values of 0.51 and 2.61 μ g/mL, respectively. Although **1** is less potent than **3** against the bacteria, it displayed modest antifungal activity against the plant pathogen *F. oxysporum*.

Although *S*-containing natural products have been isolated frequently from fungal sources, coniothiepinols A (1) and B (2) and coniothienol A (3) are the first naturally occurring thiepinols (1 and 2) and thienol (3), respectively. Compounds 1 and 2 possess the unique 4,5-dihydro-2*H*-thiepino[2,3-*b*]chromen-6(3*H*)-one skeleton, with 1 incoporating the 8-oxa-2-thia-bicyclo[3.2.1]octane partial structure due to the presence of C-5–C-8 ether linkage.

Acknowledgment. Financial support from the National Natural Science Foundation of China (30925039) and the Ministry of Science and Technolgy of China (2009CB522302, 2008ZX09401-05, and 2009ZX09302-004) is gratefully acknowledged.

Supporting Information Available: Experimental procedures, characterization data, ¹H and ¹³C NMR spectra of 1-3, CD spectra of 2 and 3, and X-ray data of 1 (CIF file). This material is available free of charge via the Internet at http://pubs.acs.org.

OL102168Z

⁽¹³⁾ Frelek, J.; Szczepek, W. J. Tetrahedron: Asymmetry 1999, 10, 1507–1520.

⁽¹⁴⁾ Gerards, M.; Snatzke, G. *Tetrahedron: Asymmetry* **1990**, *1*, 221–236.

⁽¹⁵⁾ Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512–519.
(16) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092–4096.